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Fungi of the genusFusarium have been a rich source of cuprate CO,Me
. . . Y/ v 9 \
biologically active natural products. In 2001, Osada and co-wadrkers copY Og/g/\/\,}’\)ﬁ

\

reported the isolation of lucilactaen®) from a strain ofFusarium '”C"a(‘;t)ae“e — W ¢ ,
and demonstrated this cytotoxic natural product induced cell cycle HO/\/ESZ
to arrest in a p53-independent manner in cells possessing a N 3
cl
I

o

" oo . HO R
temperature-sensitive p53 protéihucilactaene is related to other
.

Fusariumnatural products, including epolactaérfasarins A% C >
D,% and F7 L-755,807% and NG-392° which possess a-lactam 5 . ¢OMe
nucleus with a polyunsaturated side chain. Hayashi and co-workers % C N5 I

o] ;7 h

demonstrated that lucilactaene occurs naturally as the racemate by

synthesis ofl from NG-391 in seven steps (3.7% overafl). \ __/ .
2 \/\7& O\B/\/\/Sn(n-Buh
CO,Me ® g NG © , .
& 4 o} 6

stereocontrolled reaction sequence. Regioseleatitiehydrostan-
lucilactaene (1) nylatiort® followed by in situ iododestannylation of the resulting
HO H vinylstannane ¢, CCl;, —10 °C, 10 min) provided allylic alcohol
The tumor suppressor gene p53 is mutated and inactive in many9: predominantly as th2-isomer (96:4Z/E). Palladium-promoted
human tumora! This gene normally controls cell cycle progression coupling of propynylmagnesium bromide and the vinylic iodide of
and is responsible for a wide variety of processes that are critical 9 (THF, 50°C, 4 hy? afforded enyndl0. Synselective silylcupra-
for maintenance of cell integrity, including apoptosis and DNA tion®! of the alkyne triple bond in the presence of water to effect
repair’2 In programmed cell death, p53 provides a key link between Protonolysis of the intermediate vinylcuprate(0 °C, 3 h) provided
nuclear damage and mitochondrial release of further signaling Silyldienellas a separable mixture of stereoisomers (85:15). Corey-
molecules. In cells lacking functional p53, control of cell division ~Ganem oxidatioff of 11 afforded methyl dienoaté2. Subsequent
is lost, and such cells are often resistant to chemotherapy becauséododesilylation of12 (2,6-lutidine, (CR),CHOH, —10°C, 90 s}?
of defects in the damage-induced apoptotic pathway due to lack of installed the C5 iodide to afford the target

p53 function!® Agents that reestablish or mimic p53 function could OH o
be useful in cancer therapy by restoring the normal apoptotic p53 " n-BusSnH, AIBN = MgBr
response to DNA damadé. _ e then I, 85% IS Pd(PPhs)s, 80%

Our strategy for the synthesis of lucilactaene was formulated to
achieve maximum convergence. Late-stage conjugate addition of OH . ‘ OH
the primary alcohol 08 would form the tetrahydrofuran ring. Under Q (PhMe;Si);CuCNLI
thermodynamic control, this reaction should provide the more stable  d THF/H,0, 85% PhMe,Si™ 7%
cis-fused ring system with the pentaenone side chain in the pseu- 10
doequatorial position. The 2-hydroxyethyl side chain3ofould

q P Y yery MnO,, NaCN COMe

arise from the alkene df, the product of allylation of an N-pro- 5 )

tected iodomaleimide. Introduction of the pentaene side chainwould  yeormons, 70 < . ). NS, eg%Ei f f"Meth 12

rely on a convergent series of cross-coupling reactions between ! - 4

olefin partners, 6, and7. Cuprate-couplin between C12 of acid The heterocyclic fragmer@0was synthesized in high yield from
chloride’5 and C13 of iodide4 would effect ketone installation;  bromomaleimide 16).2* Protection of the imide nitrogen with the
Stille coupling® of dienyl iodide7 with the C6 vinyl stannane of  trimethylsilylethoxymethyl (SEM) group (i-Pr.NEt, DMF, —45

the dissymmetrically substituted bis-metalated 1,3-butad@nhe °C, 3 h) affordedl17. Bromide to iodide conversion (5 equiv of
would serve as a linchpin in the assembly of the terminal tetraene Nal, acetone, reflux, 12 h) quantitatively afforded protected
fragment of3; Suzuki-Miyaura couplin of the C9 vinyl boronate iodomaleimidel8. Regioselective allylation of the carbonyl distal
of 6 with C10 of vinyl bromide5 will accomplish construction of to the iodine was achieved using allylindium in DMF15 °C, 3

the C1-C12 pentaene side chain. The synthesi& wfould result days¥® to afford 19 as a separable 8:1 mixture of regioisomers.
from an orchestrated series ofs{sp? bond formation events within Ozonolysis of the terminal alkene §OCH,Cl,, —78 °C) and

a triply convergent synthetic strategy[{ 7) + (4 + 5)]. Herein, reduction of the ozonide with sodium borohydride (Ci/MeOH,

we report the total synthesis of lucilactaene. 0°C, 2 h) afforded the corresponding diol, which was protected as

The CL-C5 terminal dienoate fragmefitwas synthesized in the bis-triethylsilyl ether (2,6-lutidine, Gi&l,, —45 to 25°C, 2 h)
five steps (36% overall) from 2-butyn-1-a8)(by an efficient and to provide20 in five steps (55% overall) from bromomaleimide.
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Connection of the pyrroline core with the C12 acyl groupbof
was achieved using a cuprate/acid chloride cougfrigprmation
of Grignard reagen21 occurred upon reaction of iodid2) with
isopropylmagnesium chloride (THF60 °C, 20 min); transmeta-
lation to the corresponding cuprat2 occurred upon treatment with
cuprous cyanide—=40 °C, 20 min). Reaction of cuprat22 with
acid chloride5?” (—40 °C, 1 min) achieved formation of the
C12-C13 bond and provide@-bromoenone23 in good yield
(65%). Compoun@3was the result of six synthetic transformations
(36% overall) from bromomaleimide.

X CI%Br
Et;SiO =\ 5 5
Et;Si0 N —>THF o Et;SiO
, N
EtSIO  §ey
iPrigCI [ X=1 20
cuenaLio X MeC 21 23
. ' [—_>X=CuCNLi 22

Two reasonable options existed for the ordering of the final

20+ acid chlorides) + (diene6 + diene7)] will allow for efficient,
modular preparation of related agents for mechanistic evaluation.

23 Pd(OAc),, PhsP
+ —
24 THF/MeOH
aq. Na,CO3
25 °C, 85%

Et;SiO

N
Et:SI0  &H,0CH,CH,SiMe;

CF3CO,H

CH,Cly, 25 °C
64%

lucilactaene (1)
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